
Week 12 - Wednesday

 What did we talk about last time?
 Socket practice
 File systems

 If a regular file system (like ext2) crashes, it might be in an
inconsistent state

 It has to look through all its i-nodes to try to repair
inconsistent data

 A journaling file system (like ext3, ext4, and Reiserfs) keeps
metadata about the operations it's trying to perform

 These operations are called transactions
 After a crash, the file system only needs to repair those

transactions that weren't completed

 Files have many attributes, most of which are stored in their i-node
 These attributes include:
 Device (disk) the file is on
 i-node number
 File type and permissions
 Owner and group
 Size
 Times of last access, modification, and change

 There are functions that will let us retrieve this information in a C program
 stat(), lstat(), and fstat()

 Attributes can be stored in a stat structure

struct stat {
dev_t st_dev; /* IDs of device on which file resides */
ino_t st_ino; /* I-node number of file */
mode_t st_mode; /* File type and permissions */
nlink_t st_nlink; /* Number of (hard) links to file */
uid_t st_uid; /* User ID of file owner */
gid_t st_gid; /* Group ID of file owner */
dev_t st_rdev; /* IDs for device special files */
off_t st_size; /* Total file size (bytes) */
blksize_t st_blksize; /* Optimal block size for I/O (bytes)*/
blkcnt_t st_blocks; /* Number of (512B) blocks allocated */
time_t st_atime; /* Time of last file access */
time_t st_mtime; /* Time of last file modification */
time_t st_ctime; /* Time of last status change */

};

 Let's say you need to find out the size of a file
 Which you need to do for Project 6

 Technically, the type for st_size is off_t
 Files can be large (bigger than INT_MAX bytes)
 Since it's not clear what off_t is, you can cast to long (or if you're really

worried, long long)
 Use stat() if you have a file name and fstat() if you have a

file descriptor

struct stat information;
stat (filename, &information);
printf ("The size of %s is %ld bytes.\n", filename, (long)information.st_size);

 C can have pointers to functions
 You can call a function if you have a pointer to it
 You can store these function pointers in arrays and structs
 They can be passed as parameters and returned as values
 Java doesn't have function pointers
 Instead, you pass around objects that have methods you want
 C# has delegates, which are similar to function pointers

 K&R group function pointers in with other pointers
 I put them off because:
 They are confusing
 The syntax to declare function pointer variables is awful
 They are not used very often
 They are not type-safe

 But you should still know of their existence!

 The syntax is a bit ugly
 Pretend like it's a prototype for a function
 Except take the name, put a * in front, and surround that with

parentheses
#include <math.h>
#include <stdio.h>

int main()
{

double (*root) (double); // pointer named root
root = &sqrt; // note there are no parentheses
printf("Root 3 is %lf", root(3));
printf("Root 3 is %lf", (*root)(3)); // also legal

return 0;
}

 Some function's prototype:

 Its (worthless) definition:

 A compatible function pointer:

 Function pointer assignment:

int** fizbin(char letter, double length, void* thing);

int** fizbin(char letter, double length, void* thing)
{

return (int**)malloc(sizeof(int*)*50);
}

int** (*pointer)(char, double, void*);

pointer = fizbin;

 Just to be confusing, C allows two different styles for function
pointer assignment and usage

#include <math.h>
#include <stdio.h>

int main()
{

int (*thing) (); // pointer named thing
thing = &main; // looks like regular pointers
thing = main; // short form with & omitted

(*thing)(); // normal dereference
thing(); // short form with * omitted

return 0;
}

Why would we want function pointers?

 Consider a bubble sort that sorts an array of strings
 The book uses quicksort as the example, but I don't want to get

caught up in the confusing parts of quicksort
void bubbleSort(char* array[], int length)
{

for(int i = 0; i < length – 1; i++)
for(int j = 0; j < length – 1; j++)

if(strcmp(array[j],array[j+1]) > 0)
{

char* temp = array[j];
array[j] = array[j + 1];
array[j + 1] = temp;

}
}

 Now consider a bubble sort that sorts arrays of pointers to
single int values

void bubbleSort(int* array[], int length)
{

for(int i = 0; i < length – 1; i++)
for(int j = 0; j < length – 1; j++)

if(*(array[j]) > *(array[j+1]))
{

int* temp = array[j];
array[j] = array[j + 1];
array[j + 1] = temp;

}
}

 Let's pause for a moment in our consideration of sorts and
make a struct that can contain a rectangle

typedef struct
{

double x; //x value of upper left
double y; //y value of upper left
double length;
double height;

} Rectangle;

 Now consider a bubble sort that sorts arrays of pointers to
Rectangle structs
 Ascending sort by x value, tie-breaking with y value

void bubbleSort(Rectangle* array[], int length)
{

for(int i = 0; i < length – 1; i++)
for(int j = 0; j < length – 1; j++)

if(array[j]->x > array[j+1]->x ||
(array[j]->x == array[j+1]->x &&
array[j]->y > array[j+1]->y))
{

Rectangle* temp = array[j];
array[j] = array[j + 1];
array[j + 1] = temp;

}
}

 We can write a bubble sort (or ideally an efficient sort) that can sort
anything
 We just need to provide a pointer to a comparison function

void bubbleSort(void* array[], int length,
int (*compare)(void*, void*))

{
for(int i = 0; i < length – 1; i++)

for(int j = 0; j < length – 1; j++)
if(compare(array[j],array[j+1]) > 0)
{

void* temp = array[j];
array[j] = array[j + 1];
array[j + 1] = temp;

}
}

 Function pointers don't give you a lot of typechecking
 You might get a warning if you store a function into an

incompatible pointer type
 C won't stop you
 And then you'll be passing who knows what into who knows

where and getting back unpredictable things

 C doesn't have classes or objects
 It's possible to store function pointers in a struct
 If you always pass a pointer to the struct itself into the

function pointer when you call it, you can simulate object-
oriented behavior

 It's clunky and messy and there's always an extra argument in
every function (equivalent to the this pointer)

 As it turns out, Java works in a pretty similar way
 But it hides the ugliness from you
 Python doesn't hide as much ugliness, always requiring self

 Introduction to C++

 Start on Project 6

	COMP 2400
	Last time
	Questions?
	Project 5
	Slide Number 5
	More on File Systems
	Journaling file systems
	File attributes
	stat structure
	Example with stat()
	Function Pointers
	Function pointers
	Why didn't we cover these before?
	Declaring a function pointer
	A more complex example
	Two styles
	Motivation
	Motivation
	Motivation
	A rectangle struct
	Motivation
	Universal sort
	Typechecking
	Simulating OOP
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

